
Integer Division Operator Project Architect

Integer Division Operator Project Architect
Integer Division Operator Project Architect 

(Last Updated On: 07/10/2014)

	Table of Contents


1Integer Division Operator Project Architect


3Introduction


4Document Acronyms


5Tiers


6Deployment


7Data Flow


8Interfaces


9Open Source


10Communication


11Subsystems


12Distributed Systems


13User Interface (UI)


14Shared libraries


15Security


16Performance


17Testing


19Assessment


20Capacity Planning Issues





	Introduction


Introduction:
The Integer Division Operator Project is a test given by Amazon recruiting team to test the job candidate and a chance to present his talent. As an IT professional,  I would be using such opportunity to present my talent. In a nutshell, this is project is an overkill to present my ability to work in IT trams.

Our Architect Template:

This document is our Architect template that we use in our projects. Some of the contents may not be available at the time of the creation of this document. Some other topics may have "Not Applicable" to present a note that the analyst or the architect is aware of such topics which may not need to be covered.

Architect Lead:

The Architect is the technical lead who coordinates technical activities and artifacts throughout the project. He establishes the overall system architecture and interfaces, provides the use-case implementation, creates plans and guidelines and helps put together the development team.

System Architect:

System Architect is the overall system building blocks and interfaces. It represents the system tiers and data flow. It should present the following views:

· Tiers

· Deployment

· Data Flow

· Interfaces 

· Open Source

· Communication 

· Subsystems

· Distributed Systems

· User Interface (UI)

· Shared libraries

· Security

· Performance

· Testing

· Assessment

Document 

	Acronyms


Document Acronyms:
The following acronyms will be used throughout the document from time to time, but they reference the following terms:


	Acronym
	Definition

	  
	  

	 
	

	 
	

	 
	 

	 
	 

	 
	  

	 
	   

	
	


	Tiers


Tiers:

The term Tier is synonymous with Layer. A system architect may have more than one tier, for example, an N-Tier architect consists for N number of layers or tiers. Each has a distinct function(s) in the architect. The following can be considered as an example of a tier (MVC):

· Business-Model

· User-View

· Database

· Controller-Servers

Integer Division Operator Project:
This project is architected to be part of the business tier (Business-Model) or services tiers as a utility to calculate the division of integers. This project can be created as independent framework that would be installed as one of the services packages in business tier.
	Deployment


Deployment:

This view is how system is distributed across servers, platforms or even technologies (Legacy systems, Java, Unix Box). 

Integer Division Operator Project:

As we mentioned in tier section, this project can be created as an independent framework that is installed in Model or business tier as one of the services packages.

	Data Flow


Data Flow:

It present how data is moved from one tier to another and if there is a need to data conversion and how it is handled.

Integer Division Operator Project:

We are architecting this project with a Data Object as follows:

package dataobjects;


public class IntegerDivisionOperatorDAO 


{

        

private int numerator = 0;

        

private int denominator = 0;

        

private int remainder = 0;

        

private int quotient  = 0;

        

private String errorMessage = "Error = "; 



...

}

DAO will be used to store all values and messages also. The method


toString();

will return a formatted string with all input data and calculated ones plus messages or error messages in case of errors.

Any call to the services or utility methods will be take two integer input parameters as follows:


public IntegerDivisionOperatorDAO
 doIntegerDivision(int numerator, 
int denominator)


{



...



return(localIntegerDivisionOperatorDAO);


} 

We may also create a static method which will also perform the Division operation without the need to instantiate any object.
Messages:

Our architect has both constants and resources.ErrorMessages.properties file to store messages. The ErrorMessages.properties would be used by the system admin to change errors or messages without any change of the system code. The following are some of classes, methods, fields and calls:

utils.ErrorMessagesKeysPropertyManager.java 


ResourceBundle.getBundle("resources.ErrorMessages"); 

constants. IntegerDivisionOperatorConstants 


public final static String      AUTHOR        =




ErrorMessagesKeysPropertyManager.getParameter("author");
Data Calculation:

Math Coprocessors perform integer multiplication as series of addition and division as series of subtraction. For example the following code has the same result using multiplication or addition.


int a = 5 * 6;

        
System.out.println("a value = " + a);

        
int total = 0;

        
for(int index = 1; index <= 6; index++)

        
{

            
total +=5;

        
}

        
System.out.println("total value = " + total);

Output:


a value = 30


total value = 30

Our division algorithm would follow the same processing steps.  We had chosen this subtraction step algorithm for the following reasons:

· It is easy to understand and follow
· It is easy to debug and trace

· It is a lot simpler to understand and following than the bit shifting of values.

· As for Big O Notation is, it is equals to O(N)
Big O Notation:

It measures the efficiency of an algorithm based on the time it takes for the algorithm to run as a function of the input size. Think of the input simply as what goes into a function – whether it be an array of numbers, a linked list, etc. 
Looking at the loop listed in the addition of values the Big O Notation is:

O(N) describes an algorithm whose performance will grow linearly and in direct proportion to the size of the input data set. The example below also demonstrates how Big O favors the worst-case performance scenario. The Big O notation will always assume the upper limit where the algorithm will perform the maximum number of iterations.
There are number of possible errors with such subtraction:

1. Numerator  is 0

2. Denominator  is 0

3. Both numerator  and numerator  are 0

4. Numerator is negative

5. Denominator is negative

6. Both numerator  and numerator  are negative

7. Numerator  is not a number

8. Denominator  is  not a number

9. Both numerator  and numerator  are not numbers

10. Remainder value can be positive or negative

11. Quotient value can be positive or negative

Reusability:

The packages, classes and methods are architect-designed to be reusable by other packages and or frameworks.

	Interfaces


Interfaces:

The interfaces can come in different shapes and forms. For example, the following may be some of the system interfaces:

· Browsers

· Other Applications

· Databases

· Application Servers

· Web (HTTP) Servers

· LAN

· Different Platforms

· Different Technologies (Legacy systems, Java, JNDI, Unix Box)

Integer Division Operator Project:

The project code (packages and classes) can be integrated into any existing systems as follows:
· Services packages added to existing utils or services packages

· As a part of existing library

· Classes can be added to existing packages

Our Business Object package (BO) is used to demo how to call the Integer Division classes and methods.

	Open Source


Open Source:

Which Open Sources we are planning and using?

Pros and Cons

Integer Division Operator Project:

Not applicable.

	Communication


Communication:

Tiers, interfaces and objects and services may need to communicate and the architect has to address such communications. Communication may have different channels, protocols and forms. For example, the following are some of the communication types:

· HTTP 

· FTP

· IMAP

· Sockets

· XML

· COBRA

Integer Division Operator Project:

Not Applicable.

	Subsystems


Subsystems:

A software system can be partitioned into a number of subsystems or units. Each subsystem can be development independently; it may require the development of a number of interfaces. Depending on the design and the partitioning of the system, this may be an advantageous and reduce time, effort and cost. The architect and system analyst may need to address partition question.

Integer Division Operator Project:

Not Applicable.

Note:

The project packages can be considered a subsystem and run independently.

	Distributed Systems


Distributed Systems:

Distributed systems provide sharing of resources and information over a computer network, remote sites and databases. Distributed system can open (Internet), closed (LAN) or some thing in between. Architecting such system may need to address the following:

· Performance

· Security

· Errors

· Scalability

· Flexibility

· Transparency (no control, no knowledge or ways test or how to resolve issues)

Integer Division Operator Project:

Not Applicable.

Note:

Our packages are scalable, flexible and transparent. By architecting the project into independent packages, the code and package are scalable, flexible and transparent.

	User Interface (UI)


User Interface (UI):

UI is also known as View Tier. Such tier or an interface may run on LAN, browsers, PCs, or any where the users will be able to access the system. Architect may need to address UI and its accessibility.

Integer Division Operator Project:

Not applicable.

	Shared libraries


Shared Libraries:

Shared Libraries can be addressed in the architect or design.

Integer Division Operator Project:

Not applicable.

Note:

The packages are architected as independent packages that can be integrated into shared library.

	Security


Security:

Security may be provided, by the system platforms, companies’ firewalls and security systems. The architect may have one or more tiers take on the system security responsibilities. Servlets, Database objects may perform some security tasks. 

Integer Division Operator Project:

Not applicable.
	Performance


Performance:

Identify the system bottlenecks and how are handled.
Integer Division Operator Project:

Big O Notation:

How efficient is an algorithm or piece of code? 
Efficiency covers lots of resources, including:

· CPU (time) usage

· Memory usage

· Disk usage

· Network usage
All are important but we will mostly talk about time complexity (CPU usage).
Here is a list of classes of functions that are commonly encountered when analyzing algorithms. 
The functions are listed  in some arbitrary constant. 


Notation 


Name


O(1) 



constant - statement

O(log(n)) 


logarithmic


O((log(n))c) 


polylogarithmic


O(n) 



linear - loops

O(n2) 



quadratic - nested loops

O(nc) 



polynomial


O(cn) 



exponential
Our code has the following:

    public IntegerDivisionOperatorDAO doIntegerDivision(int numerator, int denominator)

{ ... }

One Loop: O(N)

        // do the subtraction

        while(numerator >= denominator)

        {

           numerator -= denominator;

           quotient++;

        }
If statements: 

If each statement is "simple" (only involves basic operations) then the time for each statement is constant and the total time is also constant: O(1).

if-then-else statement would be O(N).

       if(0 == numerator)          { ... }


       if(0 == denominator)      { ... }


if-then-else statement would be O(N).

        if(denominator < 0)

            
negativeDenominatorFlag = true;


        if(numerator < 0)

            
negativeNumeratorFlag = true;

        if(Math.abs(denominator) > Math.abs(numerator)) { ...}
Constants-Statements: O(1)

        // check for negative values 

        boolean negativeDenominatorFlag = false;


        boolean negativeNumeratorFlag   = false;
Comments:

There are 8 packages and 9 classes, so the Big O Notation may need some work and I just put the ground rules.

	Testing


Testing:

Testing is a crucial part of any system developments. The architect may need to address testing and it could be conducted on each of the system tiers, interfaces. He should flag if system testing may require special equipments. Risks and concerns should be also discussed.

Integer Division Operator Project:

Test scenarios

Use Case Testing: 

Use Case testing is a technique that helps software team identify test cases that exercise the whole system on a transaction by transaction basis from start to finish. 

 Unit Testing: 

 Unit test spec is a document, which is for programmers as a guideline on how to test code module. 

 Unit testing may involve the programmer, group manager and client. 

We do recommend the developer do the following in any Unit Test:
· Must have a test scenario(s) with values (input and expected output)

· Create a word document to with test steps and copying debug dump into word doc.

· Write a timestamp of the start of the test and debugger-compiler settings in the word doc.
· Run the debugger and trace both the code (line by line), values and copy the debugger running values into the word doc. Testers may use image cut/paste software such as Snagit.
· Use the debugger options to change fields values and track the result in the word doc

· Report in writing any errors encountered from code done by other developer code which the test is interacting with. For example, null pointer passed by other methods to the developer code.

· Share such word doc with the team and supervisors.

Functionality: 

There are certain standards which are followed in almost all the software testing. Having these standards makes life easier for use, because these standards can be converted into checklist and the software testing can be used easily against the checklist. Functionality Tests may include the following tests types. 

Pros and Cons:

The architect should prepare a Pro and Con Sheet, where he would be playing the devil advocate.

The team members should be involved in the architect designs and give their feedback.

Integer Division Operator Project:

Not Applicable.

	Assessment


Assessment:

See the design assessment doc.

Integer Division Operator Project:

The following are quick and dirty steps to assess our Integer Division Operator Project:
Code is easy to be used by others

Code is easy to understand, modify and trace

Package and code are reusable

Big O notation:

see the Big O Notation in the Performance section.

	Capacity Planning Issues


Capacity

Capacity

While doing capacity sizing of an application, architects would do well to consider the size of logs that would be generated by the application during production and estimate the disk space required, the provisioning of centralized file system and so on.

Capacity Planning Issues:

Creating and maintaining a Web site involves managing traffic with hardware, software, and network bandwidth. This first section explores traffic.

A Capacity Planning Checklist 

This checklist provides an in-depth look at your site and helps you anticipate where bottlenecks are likely to occur. 

· Purpose or Type of Site 

· Complexity Level 

· Customer Base 

· Current to one month

· Six months

· One year

· Finding Potential Bottlenecks 

· Find out what is likely to break first. Unless your site is extremely small, you'll need a test lab to determine that. (There are suggestions for building and using such a lab in the following list.) 

· To determine potential bottlenecks
Integer Division Operator Project:
Not applicable.
Sam Eldin

Page 1 of 23

