
Architect Template

Architect Template
Architect Template
(Last Updated On: 07/10/2014)

	Table of Contents

1Architect Template

3Introduction

4Document Acronyms

5Tiers

6Deployment

7Data Flow

8Interfaces

9Open Source

10Communication

11Subsystems

12Distributed Systems

13User Interface (UI)

14Shared libraries

15Security

16Performance

17Testing

18Assessment

19Capacity Planning Issues

	Introduction

Introduction:
Architect Lead:

The Architect is the technical lead who coordinates technical activities and artifacts throughout the project. He establishes the overall system architecture and interfaces, provides the use-case implementation, creates plans and guidelines and helps put together the development team.

System Architect:

System Architect is the overall system building blocks and interfaces. It represents the system tiers and data flow. It should present the following views:

· Tiers

· Deployment

· Data Flow

· Interfaces

· Open Source

· Communication

· Subsystems

· Distributed Systems

· User Interface (UI)

· Shared libraries

· Security

· Performance

· Testing

· Assessment

Document

	Acronyms

The following acronyms will be used throughout the document from time to time, but they reference the following terms:

	Acronym
	Definition

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	Tiers

Tiers:

The term Tier is synonymous with Layer. A system architect may have more that one tier, for example, an N-Tier architect consists for N number of layers or tiers. Each has a distinct function(s) in the architect. The following can be considered as an example of a tier:

· Business-Model

· User-View

· Database

· Controller-Servers

	Deployment

Deployment:

This view is how system is distributed across servers, platforms or even technologies (Legacy systems, Java, Unix Box).

	Data Flow

Data Flow:

It present how data is moved from one tier to another and if there is a need to data conversion and how it is handled.

	Interfaces

Interfaces:

The interfaces can come in different shapes and forms. For example, the following may be some of the system interfaces:

· Browsers

· Other Applications

· Databases

· Application Servers

· Web (HTTP) Servers

· LAN

· Different Platforms

· Different Technologies (Legacy systems, Java, JNDI, Unix Box)

	Open Source

Open Source:

Which Open Sources we are planning and using?

Pros and Cons

	Communication

Communication:

Tiers, interfaces and objects and services may need to communicate and the architect has to address such communications. Communication may have different channels, protocols and forms. For example, the following are some of the communication types:

· HTTP

· FTP

· IMAP

· Sockets

· XML

· COBRA

	Subsystems

Subsystems:

A software system can be partitioned into a number of subsystems or units. Each subsystem can be development independently; it may require the development of a number of interfaces. Depending on the design and the partitioning of the system, this may be an advantageous and reduce time, effort and cost. The architect and system analyst may need to address partition question.

	Distributed Systems

Distributed Systems:

Distributed systems provide sharing of resources and information over a computer network, remote sites and databases. Distributed system can open (Internet), closed (LAN) or some thing in between. Architecting such system may need to address the following:

· Performance

· Security

· Errors

· Scalability

· Flexibility

· Transparency (no control, no knowledge or ways test or how to resolve issues)

	User Interface (UI)

User Interface (UI):

UI is also known as View Tier. Such tier or an interface may run on LAN, browsers, PCs, or any where the users will be able to access the system. Architect may need to address UI and its accessibility.

	Shared libraries

Shared Libraries:

Shared Libraries can be addressed in the architect or design.

	Security

Security:

Security may be provided, by the system platforms, companies’ firewalls and security systems. The architect may have one or more tiers take on the system security responsibilities. Servlets, Database objects may perform some security tasks.

	Performance

Performance:

Identify the system bottlenecks and how are handled.
	Testing

Testing:

Testing is a crucial part of any system developments. The architect may need to address testing and it could be conducted on each of the system tiers, interfaces. He should flag if system testing may require special equipments. Risks and concerns should be also discussed.

Pros and Cons:

The architect should prepare a Pro and Con Sheet, where he would be playing the devil advocate.

The team members should be involved in the architect designs and give their feedback.

	Assessment

Assessment:

See the design assessment doc.

	Capacity Planning Issues

Capacity

Capacity

While doing capacity sizing of an application, architects would do well to consider the size of logs that would be generated by the application during production and estimate the disk space required, the provisioning of centralized file system and so on.

Capacity Planning Issues:

Creating and maintaining a Web site involves managing traffic with hardware, software, and network bandwidth. This first section explores traffic.

A Capacity Planning Checklist

This checklist provides an in-depth look at your site and helps you anticipate where bottlenecks are likely to occur.

· Purpose or Type of Site

· Complexity Level

· Customer Base

· Current to one month

· Six months

· One year

· Finding Potential Bottlenecks

· Find out what is likely to break first. Unless your site is extremely small, you'll need a test lab to determine that. (There are suggestions for building and using such a lab in the following list.)

· To determine potential bottlenecks
Sam Eldin

Page 2 of 19

