Software Development & Design

Q.1) Implement code to calculate the value of string “-123456.89” or “123,456.789”. Make your code extensible and able to parse all strings that can be converted to a numerical value. Do not use or assume availability of Java parsing libraries.

Q.2) Implement code which will calculate the value of 2^(3^(4^(5^6))) two different ways. Do not use or assume availability of math function libraries. For note, this is a mathematical and not a bitwise operator. As an example, 2^3 = 8.

Q.3) As an engineer you have volunteered to re-design the website platform which is not scaling to meet customer demand. Your research shows that the current platform of 1 server and 1 database scales linearly where 1 request equals one 1% CPU/IO utilization on both the server and database. You are not able to improve on the linear scalability and the hardware is already top of the line (you cannot get anything faster).

1) Describe how you would re-design the platform to improve scalability.

Vertical scalability:

· Increase main memory

· Cashing frequently-use tables and files

· Use Cache-oblivious algorithm

· Using sessions to keep data on the user-side
· Using JavaScript to do more processing on the client-side rather than server-side

· Servlets - Speed and performance

· use : HttpSession, Hidden fields, Cookies, URL rewriting, the persistency mechanism.

· Tune the thread pool size

· Minimize Java synchronization in servlets.

· Don’t use the single thread model for servlets.

· Use the servlet’s init() method to perform expensive one-time initialization.

· Avoid using System.out.println() calls.

· Fine-tune database table

· Use PreparedStatment
· Run statistic and move the frequently-used tables to memory or Cashe.

· Mapped Index for faster search
	ID (4 bytes)
	Income (4 bytes)
	Age (4 bytes)
	Gender (2 Bytes)
	State (2 bytes)

	
	
	
	
	

Architect, design, development steps and reuse the code:
1. have I done something similar

2. check if one of company project is similar

3. Search the internet and see what IMB or Google has ideas

4. call a friend for ideas and help

5. Write up all the questions

6. Try to answer the questions myself and use the internet to get answers

7. develop scenarios

8. Ask the clients questions

9. Do a prototype

To maximize performance, you can adjust the size of the thread pool on servers with faster processors and higher RAM.
Thread Pools

Most of the executor implementations in java.util.concurrent use thread pools, which consist of worker threads. This kind of thread exists separately from the Runnable and Callable tasks it executes and is often used to execute multiple tasks.

Using worker threads minimizes the overhead due to thread creation. Thread objects use a significant amount of memory, and in a large-scale application, allocating and deallocating many thread objects creates a significant memory management overhead.

One common type of thread pool is the fixed thread pool. This type of pool always has a specified number of threads running; if a thread is somehow terminated while it is still in use, it is automatically replaced with a new thread. Tasks are submitted to the pool via an internal queue, which holds extra tasks whenever there are more active tasks than threads.

An important advantage of the fixed thread pool is that applications using it degrade gracefully. To understand this, consider a web server application where each HTTP request is handled by a separate thread. If the application simply creates a new thread for every new HTTP request, and the system receives more requests than it can handle immediately, the application will suddenly stop responding to all requests when the overhead of all those threads exceed the capacity of the system. With a limit on the number of the threads that can be created, the application will not be servicing HTTP requests as quickly as they come in, but it will be servicing them as quickly as the system can sustain.

Ronnie,

I would like to thank you and your team of managers for giving me the opportunity to answer such interesting-challenging questions and my answers are as follows:

· SearsInterviewCode Project - Java code for Q.1 and Q.2
· Answer to Q.3

SearsInterviewCode Project - Java code

I created "SearsInterviewCode" project (using NetBeans) for all my Java code with the following packages:

	Package Name
	Purpose
	Comments

	 binary_tree_reflection
	Create a linked list using Java Reflect to access class's fields.
	Using Java reflect to access field - private

	test_classes

Created two classes
	Q.1) ConvertString_2_NumericalValue:

 using static methods

Q.2) Calculate_X_Value_2_Power_Y:

 Calculate X^Y for Q.2
	Demo the use of static methods.

Used both double and BigDecimal

	calc_value_power_using_node

Created three classes
	Q.2-2) Create a linked list to calculate the X ^ Y
	This is the second approach

Create the second using linked list

	constants
	Demo the use of constants
	Quick Demo

	
	
	

The code is zipped and attached to this email "java.zip" file.
Answer to Q.3

Vertical scalability:

· Increase main memory

· Cashing frequently-use tables and files

· Use Cache-oblivious algorithm

· Using sessions to keep data on the user-side

· Using JavaScript to do more processing on the client-side rather than server-side

· Servlets - Speed and performance

· Each Servlet performs one task only

· use : HttpSession, Hidden fields, Cookies, URL rewriting, the persistency mechanism.

· Tune the thread pool size

· Minimize Java synchronization in servlets.

· Don’t use the single thread model for servlets.

· Use the servlet’s init() method to perform expensive one-time initialization.

· Avoid using System.out.println() calls.

· Fine-tune database table

· Use PreparedStatment

· Run statistic and move the frequently-used tables to memory or Cashe.

· Mapped Index for faster search

Index example - 18 digits long:
	ID (5 digits)
	Income (7 digits)
	Age (3 digits)
	Gender (1 digits)
	State (2 digits)

	0 - 99999
	0 - 9999999
	0- 999
	0 - 9
	0 - 99

